
ICASE 
A TRUST REGION ALGORITHM FOR EQUALITY CONSTRAINED MINIMIZATION: 

CONVERGENCE PROPERTIES AND IMPLEMENTATION 

( N A S A - C Y - 1 8 5 7 9 9 )  A T R W T  RFGTOM ALGORITHM N89-71427 
FUR EQUALITY CONSTRAINED MINIMIZATION: 
CONVERGENCE PROPERTTES AND IMPLEMENTATION 
(ICASE) 3 5  p Uncl as 

00/61 0224382  

Avi Vardi 

Report No. 81-9 

February 20, 1981 

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langl ey Research Center Hampton V i  rgi ni a 

Operated by the 

UNIVERSITIES SPACE RESEARCH ASSOCIATION 



A TRUST REGION ALGORITHM FOR EQUALITY CONSTRAINED M I N I I l I Z A T I O N :  

CONVERGENCE PROPERTIES AND IMPLEMENTATION 

Avi Vardi 

7 n ~ U e  doh Computer App~catiavlcl i n  Science and Enginedng 

ABSTRACT 

I n  unconstrained minimization, t r u s t  reg ion  a lgor i thms use  d i r e c t i o n s  

t h a t  are a combination of t h e  quasi-Newton d i r e c t i o n  and t h e  s t e e p e s t  descent  

d i r e c t i o n ,  depending on t h e  f i t  between t h e  quadra t i c  approximation of t h e  

func t ion  and t h e  func t ion  i t s e l f .  

Algorithms f o r  nonl inear  constrained n in imiza t ion  problems usua l ly  

determine a quasi-Newton d i r e c t i o n  and use 8 l i n e  search  technique t o  de t e r -  

mine t h e  s t e p .  Since t r u s t  reg ion  s t r a t e g i e s  have proved t o  be success fu l  
. .  

i n  unconstrained minimization, we develop a new t r u s t  reg ion  s t r a t e g y  f o r  

e q u a l i t y  cons t ra ined  minimization. This a lgor i thm i s  analyzed and g loba l  

as w e l l  as l o c a l  s u p e r l i n e a r  convergence theorems are  proved f o r  va r ious  

xers ions.  

We demonstrate how t o  implement t h i s  a lgor i thm i n  a numerical ly  s t a b l e  

way. A computer program based on t h i s  a lgor i thm has  performed very  sat is-  

f a c t o r i l y  on tes t  problems; numerical r e s u l t s  are provided. 

. 
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I. In t roduc t ion  

Consider t h e  problem of minimizing a smooth non l inea r  func t ion  s u b j e c t  

t o  non l inea r  c o n s t r a i n t s :  min f (x)  

m - < n. 

s t r a i n e d  problem t o  a r e l a t e d  unconstrained problem of minimization o r  

so lv ing  equat ions  and then t o  t r a n s l a t e  t h e  quasi-Newton technique on t h e  

unconstrained problem back t o  t h e  cons t ra ined  problem. W e  w i l l  mention a 

few quasi-Newton methods t h a t  are r e l a t e d  t o  t h i s  work. 

type  of algorithm: a t  each i t e r a t i o n  a quasi-Newton s t e p  i s  generated and 

then  a l i n e  search  technique is  used t o  dec ide  which p o i n t  should be accepted.  

For t h e  purpose of dec id ing  which po in t  t o  accep t ,  a pena l ty  func t ion  is  

designed. This  func t ion  may look l i k e  PL(x) = f ( x )  + Cvilhi(x) I where t h e  

s u b j e c t  t o  h j  (x) = 0, i = 1,. . .m; 

Most of t h e  methods f o r  t h i s  problem at tempt  t o  t ransform t h e  con- 

They d e a l  wi th  one 

vi ' s  are pena l ty  parameters t h a t  have t o  be determined. 

Han [16] ,  using t h e  quadra t ic  programming approach without  l i n e  

searches ,  and Tapia  I351 using the m u l t i p l i e r s  update formula approach 

gene ra l i ze  t h e  l o c a l  convergence theory of Broyden, e t  a l .  [ 3 ] and prove 

q-super l inear  convergence. One paper t h a t  cons iders  t h e  e f f e c t  of t h e  

pena l ty  func t ion  on l o c a l  convergence i s  Chamberlain, e t  a l .  [ 4  3 .  

I n  a l l  t h e s e  approaches the  algori thms use  approximations t o  t h e  

Hessian of t h e  Lagrangian func t ion  wi th  r e spec t  t o  x. 

tee l o c a l  +super l inear  convergence we  must assume t h a t  t h e  i n i t i a l  

Hessian approximation i s  c l o s e  enough t o  t h e  Hessian a t  t h e  s o l u t i o n  which 

may no t  be p o s i t i v e  d e f i n i t e .  Powell [ 2 4 ]  analyzes  l o c a l  convergence and 

exp la ins  why p o s i t i v e  d e f i n i t e  Hessian approximations can s t i l l  be  used. 

I n  o rde r  t o  guaran- 

Han [14],  under some condi t ions  t h a t  bound t h e  Hessian approxima- 

t i o n s ,  e s t a b l i s h e s  g loba l  convergence when exac t  l i n e  sea rch  ( f o r  a 

pena l ty  func t ion )  is  used. 

implementation appears  i n  Powell [25 1. 

A similar a n a l y s i s  wi th  more emphasis on 
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I n  sec t ion  2 w e  d e r i v e  t h e  quasi-Newton s t e p  f o r  t h e  problem. The 

main con t r ibu t ion  of t h i s  paper is  t h e  i n t r o d u c t i o n  of a t r u s t  reg ion  

a lgor i thm f o r  e q u a l i t y  cons t ra ined  minimization and t h i s  i s  t h e  s u b j e c t  

of s e c t i o n  3. 

t h e  quadra t i c  approximation t o  t h e  func t ion  which is  used t o  o b t a i n  t h e  

quasi-Newton s t ep  is t r u s t e d  only wi th in  a sphere  of r a d i u s  r around 

t h e  c u r r e n t  point .  This s t r a t e g y  has  proved t o  be s u c c e s s f u l  i n  uncon- 

s t r a i n e d  minimization ( see  [31 ] ) .  The convergence p r o p e r t i e s  of 

t h e  a lgor i thm are presented i n  s e c t i o n  4 and i n  s e c t i o n  5 we  demonstrate 

how t o  implement t h e  a lgor i thm and provide numerical  r e s u l t s .  

The idea  behind t h e  a lgor i thm i s  t h a t  a t  each i t e r a t i o n  

Notat ion Convention: W e  use  s u p e r s c r i p t s  t o  denote t h e  i t e r a t i o n  

we  are in.  Thus Axk is t h e  s t e p  a t  t h e  kth i t e r a t i o n .  I n  o rde r  t o  avoid 

confusion with powers of matrices w e  use  parentheses  i n  t h e  fol lowing way: 

( B k ) j  denotes the jth power of t h e  ma t r ix  Bk where Bk i s  a ma t r ix  

a s soc ia t ed  with t h e  kth i t e r a t i o n .  

Ax 
W e  a l s o  o f t en  r e p l a c e  f o r  convenience (G) by (x,v) and (av) by 

2 4  (Ax,Av). A l l  vec to r  corms are Euclidean norms, i .e. ,  1 )  x/I = 11 x &  = (Exi) . 

2. A Quasi-Newton Algorithm 

Consider m +  1 real valued func t ions  f ,hl, . . . , h  def ined  on En. m 

W e  are i n t e r e s t e d  i n  so lv ing  t h e  problem 

min f ( x ) .  
x : h (x) =O 

W e  w i l l  a c t u a l l y  t r y  t o  f i n d  a l o c a l  minimizer f o r  t h i s  problem, 
* 

i .e.,  a f e a s i b l e  po in t  x such t h a t  t h e r e  e x i s t s  a 6 > 0 such t h a t  

f o r  a l l  x s a t i s f y i n g  h(x)  = 0 and 11 x- x*II < 6 ,  f (x 5 f (x) . Assign 
* 

Lagrange m u l t i p l i e r s  vl, ..., v 

Lagrangian funct ion 

t o  each of t h e  c o n s t r a i n t s  and form t h e  m 
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T (2.2) L(x,v) = f (x)  + h(x)  v 

The g rad ien t  of L will be denoted by 

V2f (x) + Cv.V*h 1 

T vh (XI 
b 

where 

Vf(x) = and Vh(x) = 

The Hessian matr ix  of L w i l l  be  denoted by 

( 2 . 3 )  

2 v L(x,v) = 

where 

ahl -(x) 

. 
0 

ahl 
ax -(x) ' 
n 

Y 

kyL=ly ..., n 

and 

f o r  i= ly...ym . aXkaXR k,R=l, ..., n V 2 hi(x) = [ a2hi 
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W e  w i l l  assume t h a t  f ,  hlY...,h m are twice cont inuously d i f f e r e n t i a b l e  

and t h e r e  e x i s t s  a L ipsch i t z  cons tan t  K such t h a t  

and t h a t  f i s  bounded below. 
* * 

A t  a l o c a l  minimizer x t h e r e  e x i s t s  v d IRm such t h a t  

* T  * *  v L(x  ,V ) = 0 and f o r  a l l  z Q IRm such t h a t  Vh(x ) z = 0 ,  

T 2  * *  * 
z vxxL(x,V)z 2 0. W e  assume t h a t  Vh(x ) 

a l l  

Vh(x) 

handle t h e  case when Vh(x) is  not  of f u l l  rank. 

i s  of f u l l  rank and t h a t  f o r  

* T  T 2  * *  z € IRm,  Vh(x ) z = 8 ,  z VxxL(x , V  ) z  > 0. We a l s o  assume, f o r  now, t h a t  

i s  of f u l l  rank f o r  a l l  x 6 ’ l R n  ; we w i l l  show i n  s e c t i o n  5 how t o  

Looking a t  the Hessian mat r ix  V2L(x,v) as def ined by (2.3) we  see 

2 t h a t  t he  t e r m  V L(x,v) r equ i r e s  second d e r i v a t i v e s  of f and hi’s.  

Since i n  p r a c t i c e  second d e r i v a t i v e s  are o f t e n  unavai lab le  we  use approxi- 

mations B VxxL(x.v). Having the  mat r ix  B we a l s o  ob ta in  an approxi- 

mation t o  t h e  matrix V2L(x,v) of t he  form 

xx 

2 

k 2 k k  
When B is  replaced by B 2 VxxL(x ,v  ) t h e  mat r ix  w i l l  be used t o  

k ob ta in  t h e  s t e p  Axk,Avk and hence x k+l = xk + Axk and v k+l = vk + nv . 
k 

The means f o r  obtaining Ax , Avk are descr ibed i n  t h i s  s e c t i o n  and 
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s e c t i o n  3. In order  t o  cont inue t h e  i terat ive process  Bk must be updated 

to Bk+l. Bk a t  each i t e r a t i o n .  

The BFGS update is  due t o  Broyden [2],  Fle t che r  [ l o ] ,  Goldfiarb [12], and 

Shanno [26]. If If Yk = v x u X  k+l ,V k+l ) -vxT-h ,v  k+l) and (yk)TVxk > 0 

We use t h e  BFGS update formula t o  update 

then  

( 2 . 4 )  

m rn 

k k1 k k k l k  
Bk+l = Bk + y y, B Ax Ax B 

m 

k' k k Y k" ax Ax B Ax 

Otherwise B k+l - - Bk. I f  Bk i s  symmetric and p o s i t i v e  d e f i n i t e  then so is  

Bk+l.  Moreover i f  Bk+l i s  given by (2.4) i t  s a t i s f i e s  t he  secan t  equat ion  

Bk+lxk = y . 
bu t  t h e  use of p o s i t i v e  d e f i n i t e  update guarantees ,  as w i l l  be  seen  la ter ,  

k 2 * *  The mat r ix  VxxL(x ,v  ) i s  n o t  n e c e s s a r i l y  p o s i t i v e  d e f i n i t e  

descent  d i r e c t i o n s  and w i l l  n o t  i n t e r f e r e  wi th  f a s t  l o c a l  convergence. I n  

t h e  implementation we  w i l l  s t o r e  and work with t h e  Cholesky decomposition 

k kT of t h e  mat r ix ,  Bk = C C . 
W e  can now present  t h e  quasi-Newton (0.11.) s t e p  f o r  t h i s  problem: 

"1 . 
[ Bkk TVh(f)]-l r f  (x  k ) +Vh(x ) v  

(2.5) [$I = - (B -k ) -1 VL(x k ,v k ) = - 
Vh(x ) h (xk> 

Quasi-Newton Algorithms usua l ly  employ a l i n e  search  t o  determine an 

0 - < a k - < 1 such t h a t  

certain c r i t e r i o n  ( l i k e  a decrease of a Penal ty  func t ion ) .  

x k+l = xk + akaxk, vk+' = vk + akavk s a t i s f y  a 

An equiva len t  way of computing the  Q. N. s t e p  i s  t o  s o l v e  t h e  quadra- 

t i c  programming problem 
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min L(x k k  ,v ) + VxL(x k k T  v ) AX + *AX T k  B Ax 

s.t. - 

k k T  h (x  ) + Vh(x ) Ax = 0 . 
(2 .6)  

Now Axk i s  the s o l u t i o n  of (2.6) and Avk i s  t h e  v e c t o r  of Lagrange 

m u l t i p l i e r s  corresponding t o  t h e  l i n e a r  c o n s t r a i n t s .  

i n  (2.6) may be looked a t  as a quadra t i c  approximation of t h e  Lagrangian func- 

t i o n  wi th  Lagrange mul t ip l e r  v . 
minimizing t h i s  quadra t i c  approximation s u b j e c t  t o  t h e  o r i g i n a l  c o n s t r a i n t s ,  

l i n e a r i z e d  a t  the p o i n t  x . 

The o b j e c t i v e  func t ion  

k The quadra t i c  problem thus  c o n s i s t s  of 

k 

3. The Trus t  Region Algorithm 

W e  f i r s t  motivate our  method and then  provide t h e  d e t a i l s .  I n  a 

Trus t  Region algori thm we  have a t  each i t e r a t i o n  a Trus t  Region sphere  

around t h e  cu r ren t  po in t  {x +Ax: 11 Ax11 - < r 1 i n  which w e  t r u s t  t h e  

quadra t i c  approximation of t h e  func t ion  o r  i n  our case t h e  q u a d r a t i c  

approximation t o  t h e  Lagrangian func t ion  as i n  (2.6) .  

of rk w i l l  be d iscussed  later i n  t h i s  s ec t ion . )  An at tempt  t o  add a 

k k 

(The de termina t ion  

t r u s t  reg ion  t o  (2.6) r e s u l t s  i n  t h e  problem 

k k T  h ( x  ) + Vh(x ) Ax = 0 

k 
IlAxll L r 9 
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and w e  can immediately observe a d i f f i c u l t y :  I f  rk i s  too  small we  

may have {Ax:h(x ) +Vh(x 

s h o r t e s t  s t e p  Ax t h a t  s a t i s f i e s  h(x + Vh(x ) Ax = 0 l ies  ou t s ide  t h e  

Trus t  Region. We suggest t he re fo re  t o  change t h e - l i n e a r  c o n s t r a i n t  i n  

(3.1) i n t o  ah (x  ) + Vh(x ) Ax = 0 where a depends on t h e  r ad ius  r 

and i s  determined such t h a t  

k k T  Ax= 0 )  n {Ax: 11 Ax 11 - < rk) = $. Thus even t h e  

k k T  

k k T  k 

{Ax:ah(xk) + Vh(xkITAx= 0 )  f! {Ax: 11 Ax11 - < rk) $: $. 

W e  now give  more d e t a i l s  on our method. I n  order  t o  s impl i fy  t h e  nota- 

t i o n s  we  omit t h e  supe r sc r ip t s .  Assume w e  are a t  t h e  cu r ren t  po in t  x wi th  

Lagrange m u l t i p l i e r  v. We take  a Q-R decomposition of Vh(x) wi th  column 

p ivo t ing ,  i .e.,  f i n d  an orthogonal matrix Q,  a permutation matr ix  I1 and 

T a nonsingular  upper t r i a n g u l a r  m x m  mat r ix  T such t h a t  QVh(x>n = (o). 

Reca l l  t h a t  w e  have assumed i n  t h i s  s e c t i o n  t h a t  Vh(x) i s  o f ' f u l l  rank 

f o r  a l l  x E IRn. We p a r t i t i o n  Q by Q = (:), where Q has  'm rows. 
- 

L e t  Ax(X),Av(X) be computed i n  t h e  following form: 

(3.2) 
B + X I  Vh(x) 

Vh(x)T 0 

where 

and X chosen s o  t h a t  1 1  Ax<A)ll r. Theorem 3.2 summarizes the  

c h a r a c t e r i s t i c s  of Ax(A), Av(A) as a func t ion  of A i n  t h e  new model. 

We f i r s t  need the  fol lowing l e m m a :  



-8- 

Lemma 3.1 For  any i n t e g e r  P > 0, mat r ix  B and g c IR" , we have t h a t  

xP-(B+ XI)-P*~+ g as x + 03. 

Theorem 3.2 Consider (Ax(X),Av(Xj) as def ined  i n  ( 3 . 2 ) .  Then Ax(X) 

and (v+Av(X)) do n o t  depend on v f o r  a l l  - > 0. When X t ends  t o  

i n f i n i t y ,  v t Av(h) -+ C+ E [Vh(x) Vh(x)I- l [h(x)  - Vh(x) Vf ( x ) ]  and 

Ax(X) - VL(x,G+) -+ 0. F i n a l l y ,  11 Ax(X)II is  a monotonically decreas ing  

func t ion  of A 2 0. 

T T 

1 

on both s i d e s  i n  ( 3 . 2 )  I B + X I  Vh(x) 

Oh(x)T 0 
Proof: By mul t ip ly ing  wi th  

w e  o b t a i n  

(3 .3 )  

( 3 . 4 )  

(B+XI)Ax + Vh(x) AV + ~ , L ( X , V )  = 0 ? 

' 69 $3 
4 

c v *  T * 

Vh(x) AX + a(X)h(x) = 0 . 

From (3 .3 )  we get 

(3.5) Ax = - ( B +  XI)-'VxL(x,v+ Av). 

From ( 3 . 4 )  and (3.5) w e  have 

(3.6) Av = [Vh(x)T(B+XI)-lVh(x) I--' ::v,(h)*h(x) - V~(X)~(B+XI.)-~V~L(X,V)] , 

which impl ies  t h a t  

T 
( 3 . 7 )  v+Av = [Vh(x) ( B +  X 1 ) - ' V h ( ~ ) ] - ~ [ a ( X > ~ h ( x )  - Vh(x)T(B+ XI>-'Vf (x) ] .  
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Thus Ax(X) and (v+Av(X)) do not  depend on v f o r  a l l  h - > 0. To g e t  

t h e  asymptot ic  behavior  of Ax(x), Av(X) we use  lemma 3.1. Note t h a t  when 

X is  l a r g e ,  a ( h )  = 1/X. Thus when X t ends  t o  i n f i n i t y  

T v+Av(X) = [AVh(x) ( B +  XI)-lVh(x) I-'[h(x) - XVh(x)T(B+ AI)-lVf (x)] 

T 5 

+ [Vh(x) n ( x )  l-'[h(x) - Vh(x)TVf ( x ) ]  = v+ . 

and from (3.5) 

Ax(A) z - x 1 VXL(x,G+) . 

The proof t h a t  11 Ax11 is  monotonically decreasing t o  ze ro  is s t r a i g h t -  

forward but  somewhat long and is omitted here .  For a proof see [31]. 

One of t h e  major d i f f i c u l t i e s  i n  cons t ra ined  opt imiza t ion  i s  i n  

dec id ing  whether (xk+l,vk+') i s  a b e t t e r  approximation t o  t h e  s o l u t i o n  

k k  T 
than (x ,v ). The Lagrangian funct ion L(x,v) = f ( x )  + h(x)  v cannot 

serve f o r  t h i s  purpose because of the r i s k  of cyc l ing .  

t h e  pena l ty  func t ion  

Ins t ead  we use  

where t h e  pi ' s  

c o e f f i c i e n t s .  

are p o s i t i v e  f ixed cons t an t s  t h a t  are c a l l e d  pena l ty  

Before s t a t i n g  t h e  algori thm it is  important  t o  show t h a t  a t  each 

i t e r a t i o n  t h e r e  w i l l  be  a ( r ad ius  small enough o r )  X > 0 l a r g e  enough 

such t h a t  a penal ty  func t ion  of the form of ( 3 . 8 )  

t h e  Lagrangian i n  t h e  algori thm i n  o rde r  t o  achieve g l o b a l  convergence) 

i s  a l s o  decreased. 

(which w i l l  r e p l a c e  
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Theorem 3.3 I f  (Ax,Av) is  computed as i n  ( 3 . 2 )  and V L ( X , ~ + )  0, 

then t h e r e  e x i s t s  A > 0 l a r g e  enough such t h a t  L(x+Ax(A),v+Av(A)) < 

L(x,v+ Av(A)). Further  assume t h a t  V i = 1,. . . ,m 

Then t h e r e  e x i s t s  X > 0 l a r g e  enough such t h a t  PL(x+Ax(A)) < PL(x) 

where PL(x) = f (x) + Cpil hi(x) I . 

-- Proof. W e  w i l l  use  t h e  asymptotic behavior of Ax,Av a s  e s t a b l i s h e d  by 

Theorem 3.2. From Taylor ' s  theorem we have 

X [ L ( X + A X , V + A V ) - L ( X , V + A V > ]  = XV L(x+vAx,v+Av) T Ax f o r  some v ~ ( 0 . 1 ) .  
x 

W e  now use Lemma 3 . 1  and the  f a c t  t h a t  VL(x,c+) 0 impl ies  

vxL(x ,~+)  9 0 t o  ob ta in  t h a t  when A t ends  t o  i n f i n i t y  

T 
A[L(x+ Ax,v+ Av) - L(x ,v+  Av)] + -VxL(x,G+) VXL(x,G+) < 0 .  

Next consider  PL(x+Ax): 

A[PL(x+ AX) - PL(x)] = 

= A[f(x,tAx) - f ( x )  + Cp,(lhi(x+Ax)I - I h i ( x ) l > l  = 

= A[Vf (x) Ax+ &Ax V f ( x +  vAx)Ax T T 2  

T T 2  + Uisign(hi(x)) (Vhi(x) Ax+ *Ax V h i (x+ vAx)Ax) 
i : h p ) $ . O  

+ piodVhi(x)TAx+ 3AxTV2hi(x+vAx)Ax)]. 
i: hi(x)=O 
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f o r  some v E [0,11 and O i =  tl. The s i g n  of ai i s  no t  important 

because as w e  s h a l l  see, the  t h i r d  term tends t o  zero  when X tends t o  

i n f i n i t y  . Thus 

X[PL(x+Ax) - PL(x)] h[Vf(x) T AX + *AX T 2  V f(x+VAx)Ax 

+ pisign(hi(x)) (-a(A)hi(x) + 3Ax T 2  V hi(x+ vAx)Ax) 
i: hi (x)fO 

+ pioi(&Ax T 2  V hi(x+VAx)Ax)]. 

When X t ends  t o  i n f i n i t y ,  XAx -+ -VxL(x,%+) and X*a(X) = 1. Thus 

and because t h e  choice of p i ' s  i n  (3.9)  is such t h a t  vi > lG+il f o r  

a l l  i=l, ..., m t h e  las t  express ion  i s  nega t ive  and t h i s  completes t h e  

proof of t h e  theorem. 

We would l i k e  t o  emphasize two nice p r o p e r t i e s  of t h i s  model: 

a. When r is  l a r g e  enough, t h e  f u l l  Q.N. s t e p  i s  taken and 

X = 0. When r i s  very  s m a l l  and as a consequence 1 is  very  l a r g e ,  

1 Ax =: - VxL(x,G+) is a steepest  descent d i r e c t i o n  i n  minimizing L(x,G+). 

- 
.) v as def ined  i n  Theorem 3.2 does no t  depend on B and has  been used i n  + 

o t h e r  a lgor i thms f o r  e q u a l i t y  constrained opt imiza t ion .  (See, e.g. [30] . )  

b. I f  a bound on t h e  right-hand s ide  i n  (3 .9)  is  known, then  w e  

i n  t h e  penal ty  func t ion  and t h e r e  i s  no need 'i can f i x  t h e  parameters 
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t o  change t h e  pi 's 

cyc l ing .  

i n  t h e  process  of t h e  convergence wi th  t h e  r i s k  of 

Here is our algori thm. 

Algorithm I 

Step 

S tep  

Step 

(3.10) 

0 0 0 0  1: S t a r t  wi th  x , v , r , B , k = - l .  

2: k = k + l .  

3: Find Ak ( f i r s t  t r y  Ak = 0) and Axk, Avk such t h a t  

k and A k ( I (  AxkII - r ) = 0. 

k k  Step 4 :  Check i f  PL(x +Ax ) <  PL(xk). I f  n o t ,  reduce rk and 

r e tu rn  t o  S t e p  3. 

(If a bound as i n  (3 .9)  is n o t  known, pi may be chosen by a method 

ndescnibed i n  sec t ion  5 C m c  - 

S t e p  5: Check f o r  convergence. I f  no t  achieved, cont inue.  

Step 6: Compare the  quadra t i c  approximation of L wi th  t h e  va lue  

k k k  k 
of t h e  Lagrangian func t ion  and i t s  g rad ien t  a t  (x +Ax , v  +Av ) and 

accordingly increase  o r  decrease r . k+l 

k k k k  k k k  k Step  7: Compute y = VxL(x +Ax ,v +Av ) - VxL(x ,v +Av ) and 

update gk+l = BPGS ( B ~ ,  axk, yk> . 
k Step 8: xk+l = xk + Axk; vk+' = vk + Av ; r e t u r n  t o  Step 2.  
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4. Convergence P rope r t i e s  

The g loba l  convergence theorem t h a t  appears  i n  t h i s  s e c t i o n  assumes 

t h a t  t h e  choice of 

11 (Ax ,Avk)ll rk, bu t  i n s t ead  a t  each i t e r a t i o n  Ak is  chosen t o  

minimize t h e  pena l ty  func t ion  

Ak i n  S tep  3 of Algorithm I is n o t  such t h a t  

k 

PL(x k k  + Ax ) . 
Thus w e  could restate Step  3 and 4 of t h e  a lgor i thm as fol lows:  

Find Ak,  Ax k = Ax k k  (1 ) and Av k k  ( A  ) such t h a t  

(We w i l l  refer t o  t h i s  as "exact A-search.") 

The fol lowing theorem which g ives  the  g l o b a l  p r o p e r t i e s  of t h e  algo- 

r i thm i s  similar t o  Theorem 3.2 i n  [14]. 

Theorem 4.1. Assume Algorithm I is performed wi th  exac t  A-search (4.1) 

and t h e r e  e x i s t  two p o s i t i v e  numbers a,B such t h a t  a z  z z B z 5 Bz z 

f o r  each k and any z E En. Also assume t h a t  pi, i = 1, ..., m s a t i s f y  

i n e q u a l i t y  (3 .9 )  a t  a l l  p o i n t s  xk generated by t h e  a lgor i thm and t h e  set 

{x: f (x)  + Cpilhi(x)l < f ( x  ) + Cvilhi(x )I} Then t h e  sequence 

{xk) remains bounded, and i f  i s  any accumulation p o i n t ,  h(%) = 0 and 

t h e r e  e x i s t s  a v CE lRm such t h a t  Of(%) + Vh(%)? = 0. 

T T k  T 

0 0 i s  bounded. 

k 

and h ( x  ) = 0. 

Proof .  F i r s t  observe t h a t  i f  Ax = 0, then  from theorem 3 . 2  

VxL(x ,v +Av ) = 0 

s a t i s f i e s  t h e  requi red  condi t ions .  Suppose now t h a t  f o r  a l l  k,  Ax 4 0. 

From t h e  a lgor i thm w e  have f o r  a l l  

because of t h e  assumptions {xk} 

x. 

k k  k k That means t h a t  (xk,vk+Avk) 

k 

k k  k,  PL(x + Ax ) < PL(xk). Thus, 

i s  bounded and has  an accumulation po in t  

- 
Without loss  of g e n e r a l i t y  w e  may assume (by t ak ing  a subsequence) 
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t h a t  

assumed ex i s t ence  of a,B.) L e t  A%(A), (G+Av(A)) be determined by ( 3 . 2 )  

with  z ,  B rep lac ing  x and B. (According t o  theorem 3 . 2 ,  A%(A) and 

xk -+ 2, Bk + %. (B exists and i s  p o s i t i v e  d e f i n i t e  because of t h e  
- 

- 
( G + A G ( X ) )  do not  depend on c . )  Let  be  such t h a t  PL(%+A%(X)) = 

min PL(%+A%(A)). L e t  A% = A?(X) and (G+AG) = (G+AG(i)) .  
A: A ?  0 

I f  A% = 0, then as above w e  see t h a t  VL(%, ++A?) = 0. I f  A% 0, 

k -  w e  w i l l  o b t a i n  a cont rad ic t ion .  

From theorem 3 . 3  we can conclude t h a t  PL(%+ A%) < PL(%). L e t  = 

Our assumptions imply t h a t  Ax (A) -f A%. 

- 
, PL(%+AG) - PL(%). Since xk + Axk(i) -+ % + A%(A) i t  fol lows t h a t  f o r  a 

s u f f i c i e n t l y  l a rge  k 

I B k k  k k -  But PL(2) < PL(x k+l) - - 

which f o r  k l a rge  enough c o n t r a d i c t s  ( 4 . 2 ) .  This  completes t h e  proof 

min PL(x + A X  (A ) )  < PL(x +Ax ( A ) )  + 7, 
~ 

A : A L O  

of t h e  theorem. 

We now e s t a b l i s h  t h e  l o c a l  p r o p e r t i e s  of t h e  algori thm. We assume 

k k  * *  k t h a t  l i m  ((x ,v )) = (x ,v ), a l o c a l  s o l u t i o n ,  and t h a t  Ax 0 f o r  a l l  

k. We w i l l  a l s o  assume, f o r  now, t h a t  VxxL(x ,v  ) is  a p o s i t i v e  d e f i n i t e  
2 * *  ~ 

matrix.  W e  w i l l  d i scuss  t h e  o the r  case a t  t h e  end of t h i s  s ec t ion .  Another 

problem i s  t h a t  Algorithm 1 uses  t h e  pena l ty  func t ion  PL(x) t o  dec ide  i n  

S tep  4 whether t o  accept t h e  s t e p .  This  may i n t e r f e r e  wi th  f a s t  l o c a l  

convergence. I n  [ 4 ]  an example is given which shows t h a t  even when w e  

are a r b i t r a r i l y  close t o  t h e  s o l u t i o n ,  t h e  use  of t h e  pena l ty  func t ion  

may prevent  supe r l inea r  convergence. Our way of handl ing t h i s  problem 
i 

l i s  t o  change s l i g h t l y  t h e  pena l ty  func t ion  so  t h a t  i n  a neighborhood of 

T f e a s i b l e  p o i n t s  the r e g u l a r  Lagrangian func t ion  L(x,v)  = f ( x )  + h(x)  v 
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w i l l  r ep l ace  t h e  pena l ty  func t ion  in  S tep  4 .  More d e t a i l s  appear i n  

s e c t i o n  5. 

i n  t h e  neighborhood of a f e a s i b l e  poin t  i n  order  t o  r e t a i n  t h e  g loba l  

p r o p e r t i e s  of t he  algori thm. 

W e  w i l l  s t i l l  use t h e  penal ty  func t ion  when t h e  po in t  is  n o t  

S ince  t h e  fol lowing d iscuss ion  d e a l s  wi th  what happens i n  a neighbor- 

hood of t h e  s o l u t i o n ,  w e  w i l l  r e f e r  t o  a lgor i thm 11 which r e p r e s e n t s  an 

i n t e r p r e t a t i o n  of a lgori thm I i n  which L(x,v) i s  used in s t ead  of t h e  

pena l ty  func t ion .  

Algorithm I1 

0 0 0 0  Step 1: S t a r t  wi th  x , v , r , B , k = 1. 

Step  2: k = k + 1 .  

S tep  3 Find rk such t h a t  i f  t h e  s t e p  is computed according t o  (3.10) 
and 4 :  

L(x k +Ax k k  ,v +Av k ) < L ( x  k k  ,v +Av k ). ( 4 . 3 )  

4 - 1  k k 
(Try f i r s t  VL(x ,v ) 11, 
Q.N.  s t e p  satisfies condi t ion  ( 4 . 3 ) . )  

rk = 11 (B ) i .e . ,  check whether t h e  

S tep  5: Check f o r  convergence. I f  n o t  achieved, cont inue.  

- VxL(x ,v+Av ) S t e p  6 :  Compute y = VxL(x +Ax ,v +Av ) and update  k 

gk+l = BFGS ( B ~ ,  axk, yk) . 
k+l k k 

Step  7 :  x k+l = xk+  Axk; v = v +Av . Return t o  S tep  2. 

We w i l l  show t h a t  t h e r e  e x i s t  E > 0, 6 > 0 such t h a t  i f  

0 - 1  2 * * 11 xo-  x*)( < E, 11 (B - VxxL(x ,v )-'I( < 6 (such a bound i s  equ iva len t  

0 2 * *  
t o  a bound on 11 B - V L(x ,v  ) 1 )  1, then t h e  convergence is q-superl inear .  

The main t o o l s  f o r  l o c a l  convergence i n  unconstrained problems w e r e  
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es t ab l i shed  i n  [3] .  Lemma 4.2 i s  proved t h e r e ;  (we r e p l a c e  t h e  uncon- 

s t r a i n e d  func t ion  wi th  t h e  Lagrangian func t ion  wi th  a f i x e d  Lagrange 

m u l t i p l i e r  v .) 
* 

We w i l l  a lso use t h e  fac t  t h a t  t h e r e  e x i s t  a cons t an t  q > 0 such 

t h a t  f o r  every n x n  matrix A 

1 2  * *  
Lemma 4.2 L e t  (x ,v ) be a l o c a l  s o l u t i o n .  For a l l  z ,z  E IRn 

1 "  2 *  2 * *  where cr(z1,z2) = max()/ z - x 11 , 11 z - x 11 1. Furthermore,  if VxxL(x ,v ) 

is  i n v e r t i b l e  t h e r e  e x i s t  E > 0 and p > 0 such t h a t  Cr(z 1 2  , z  ) 5 E 

- 1 2 1  11 z - z 11 < 11 VxL(z 2 *  ,v ) - VxL(z 1 *  , v  ) 11 5 p ( I  z2 - z 1 1 1 .  i m p l i e s  t h a t  
P 

Another important r e s u l t  i n  t h e  paper by Broyden, Dennis, and More i s  

t h e  bounded d e t e r i o r a t i o n  of ( t h e  inve r se  of o r )  t h e  Hessian approximations.  

Han [13] and Tapia [29]  observed t h a t  t h i s  r e s u l t  also a p p l i e s  t o  t h e  

cons t ra ined  case. 

Theorem 4.3.  There e x i s t  p o s i t i v e  E and 6 such t h a t  i f  

11 (x ,v - (x ,v ) 11 < E and 11 (Bo)-'- VXxL(x ,v ) 11, < 6 

(x  , V  = (x ,v)  - (B) VL(x,v) and B+ = BFGS(B,Ax,y) where 

y = VxL(x ,v.) - VxL(x,v ), then  

t i v e  a ,a ,CY such t h a t  

2 * * - 1  0 0  * *  
and i f  

+ +  - -1 

+ +  + + B i s  nons ingular  and t h e r e  e x i s t  posi-  

1 2 - 3  
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Lemma 4.2 and theorem 4.3 can now be used t o  ob ta in  t h e  l o c a l  r e s u l t s  

w e  need. Since t h e  fol lowing theorem i s  s i m i l a r  t o  theorems i n  f.131 and 

[29 ]  t h e  proof i s  omitted.  A proof can be a l s o  found i n  Vardi [31]. 

Theorem 4.4 There e x i s t  p o s i t i v e  E and 6 such t h a t  i f  

11 (x , v  ) - (x ,v )I1 
a l l  k ,  r = 11 (B ) VL(x , v  ) 11 i s  accepted. Furthermore, i f  

(xk+',vk+') = (x ,v  ) - (B ) VL(x ,v ) Bk+' = BFGS(Bk,Ax ,y ), 

then 11 ( X ~ + $ V ~ + ~ ) - ( X * , V * )  11 < E  and 11 (Bk+')-'- v2 xx L ( x * , v * ) - ~ ~ ~  < 26 

f o r  a l l  k. F i n a l l y ,  11 (x , v  ) - (x , v  ) 11 5 t 11 (x , v  ) - (x , v  ) 11 
f o r  o < t < 1 s o  t h a t  ( ( x  ,v  ) I  converges t o  (x  ,v ) l i n e a r l y .  

0 0  * *  * *  
< E and 11 (Bo)-'- V2 L(x , v  >-'I1 < 6 then f o r  xx 

k 4 - 1  k k 

k k  -k-1 k k k k  and 

k+l  k+l * *  k k  * *  
k k  * *  

Theorem 4 . 5 .  There e x i s t  p o s i t i v e  E and 6 such t h a t  i f  

11 (x , v  

gorithm I1 is  followed, then q-superlinear convergence i n  {(xk)} i s  

achieved 

0 0  * *  - (x ,v  111 < E and )I (Bo)- l -V~xL(x*,v*)- l l l~  < 6 and al-  
k 

V 

- __ 
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Proof. L e t  E and 6 be those  i n  Theorem 4 . 4 .  Then w e  o b t a i n  

03 k k  * *  
C 11 (x  ,v ) - (x , v  ) 11 and conclude t h a t  < 03. The nex t  s t e p  is  t o  
k= 1 

use ( 4 . 5 )  t o  show t h a t  

( see  [ 6 ] ) .  We now use t h e  i n e q u a l i t y  

t o  o b t a i n  

This  f u r t h e r  i m p l i e s  
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Dennis and Mor6 [ 6 ]  showed t h a t  t h i s  i m p l i e s  

k k  
i .e. ,  q-superl inear  convergence i n  {(x ,v ) 1 i s  achieved. 

2 * *  
VxxL(x ,v  ) To conclude t h i s  s e c t i o n  w e  d i scuss  what happens when 

i s  n o t  a p o s i t i v e  d e f i n i t e  matrix. I n  such case we  cannot t a l k  about 

11 (B'1-l- VxxL(x ,v 

any p o s i t i v e  d e f i n i t e  Bo which satisfies t h i s  i nequa l i ty .  Recall our  assump- 

t i o n  (2.5): 

decomposition (see ( 3 . 2 ) ,  ( 3 . 3 ) )  Q Vh(x ) = (n ) and t h e  p a r t i t i o n  

2 * *-1 11 < 6 as i n  theorem 4.3 because t h e r e  may n o t  be 

* *  
L ( x  ,v  ) z  > 0 ;  i n  terms of t h e  Q-R 

* T  B z s.t.  Vh(x ) z = 0,  z Vxx 
* * * T* 

U 

Q* =E] , t h i s  i n e q u a l i t y  i s  equivalent  t o  the  s ta tement:  

4 - 2  * * ==AT 
Q VxxL(x ,v  )Q i s  a p o s i t i v e  d e f i n i t e  matr ix .  

T -1 =om 
(Q B Q ) Now t h e  ques t ion  becomes whether i t  i s  enough t o  assume t h a t  

0 = . k 2  * k d T - 1  (p from t h e  Q-R decomposition of Vh(x ) )  is c l o s e  t o  (Q VxxL(x ,v )Q ) 

i n  o rde r  t o  g e t  f a s t  l o c a l  convergences. Powell [ 2 4 ]  made an important 

s t e p  towards answering t h e  quest ion p o s i t i v e l y .  H e  showed t h a t  

AA 1 i m  = o .  

impl ies  two-step supe r l inea r  convergence 

= 0.  
11 xk+l-  X*II 

l i m  - 
k-1 * 

k* I I X  - - x  II 
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5. Implementation 

Algorithm I i s  an i t e ra t ive  one. S teps  3-8 desc r ibe  what happens i n  

each s p e c i f i c  i t e r a t i o n  and w i l l  be d iscussed  he re  i n  more d e t a i l .  S ince  we  

conf ine  ourselves  i n  t h i s  chapter  t o  one s p e c i f i c  i t e r a t i o n ,  w e  omit t h e  

s u p e r s c r i p t s .  

W e  use  the Cholesky decomposition of B ,  B = CCT where C i s  a lower 

t r i a n g u l a r  matrix.  A l l  t h e  computations from t h i s  p o i n t  on w i l l  be done i n  

terms of t h i s  matr ix  C. I n  each i t e r a t i o n  i n s t e a d  of de r iv ing  gk+l from 

Bk, we w i l l  der ive  ck+l from c . k 

I n i t i a l i z a t i o n  

xo does not have t o  be f e a s i b l e .  It i s  i n t e r e s t i n g  t o  n o t i c e  t h a t  

i f  some of t h e  c o n s t r a i n t s ,  say  hl, ... hp,p 5111, are l i n e a r ,  then  even i f  

0 
hi(x ) { 0 

is  l a r g e  enough so t h a t  

hi(xk+Axk) = h . ( x  k + Vhi(x Ax 

c o n s t r a i n t s  a r e  s a t i s f i e d  f o r  t h e  rest  of t h e  i t e r a t ive  process .  

f o r  some i < - -  i < p,  as soon as t h e  r a d i u s  of t h e  t r u s t  r eg ion  

a(X) = 1 (say a t  t h e  kth i t e r a t i o n ) ,  then  

= 0 f o r  i = 1, . . . , p  and t h e  l i n e a r  
1 

vo i s  

set by t h e  program t o  [Vh(xo)TVh(x 0 ) I  -1 [h(xo) - h(x0lTVf (x')]; 3t p l a y s  

only a r o l e  i n  t h e  i n i t i a l i z a t i o n  of 

Co which is  assigned t h e  va lue  of t h e  i d e n t i t y  mat r ix  mul t ip l i ed  by 

V i ' s  and i n  t h e  i n i t i a l i z a t i o n  of 

0 0  0 0.1- 11 V ~ L ( X  ,v / r  . 

The Q-R Decomposition of h(x)  and I ts  U s e  

W e  now c l a r i f y  what we  do when Vh(x) i s  n o t  of f u l l  rank. Recall 

from ( 3 . 4 )  t h a t  Ax has  t o  s a t i s f y  a(X)h(x)  + Vh(x) T Ax = 0. I f  !Jh(x) 

is  n o t  of f u l l  rank i t  means t h a t  t h e r e  is dependency between t h e  columns 

of Vh(x) , say CdiVhi(x) = 0. I f  Cdihi(x) = 0 then  t h e  equat ions  are 

redundant and a t  least  one of them can be removed whi l e  i f  Cdihi(x) { 0 

then  t h e  equat ions are i n c o n s i s t e n t .  We assume t h a t  t h i s  is a rare s i t u -  

- 
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a t i o n  and when it happens i n  a s p e c i f i c  i t e r a t i o n  we remove redundant 

o r  i n c o n s i s t e n t  equat ions  u n t i l  t h e  remaining s e t  is independent. W e  

record t h e  number of times t h e  system lacks  f u l l  rank  and i f  it happens 

more than  m t i m e s  we  s t o p  t h e  i t e r a t i v e  process .  

Technica l ly  t h e  removal of redundant o r  i n c o n s i s t e n t  equat ions  i s  

done i n  the fol lowing way: 

of Vh(x), i.e., we  have t o  f i n d  an  or thogonal  mat r ix ,  Q, a permutation 

ma t r ix  ll and a R X k matr ix  T with t.. = 0 for i > j ,  where 

R = rank(Vh(x)), such t h a t  QVh(x)TI = (i). 
and upper t r i a n g u l a r . )  

Householder t ransformat ions .  A t  t h e  end of t h e  process ,  i f  fewer than  

k Householder t ransformat ions  were used t o  o b t a i n  T it means t h a t  

Vh(x) w a s  not of f u l l  rank. 

t h a t  correspond t o  t h e  remaining columns. 

dec ide  t o  s t o p  t h e  process  i f  t h e  norm of each remaining column i s  less 

a t  each i t e r a t i o n  w e  need a Q-R decomposition 

- 
- 1J 

( I f  R = k then  r is square 

The decomposition is  obta ined  wi th  t h e  use  of 

- 

The equat ions t h a t  w i l l  be ignored are those  

( I n  t h e  computer program we  

-14 . 
than  10 Pill 0 )  

- 
P a r t i t i o n  r i n t o  T = [T,S] where T i s  an R X R upper tri- - 

- 
angular  matrix; a l s o  p a r t i t i o n  Q i n t o  Q = [$I, where Q has  2 rows 

and l e t  II = [II,n] where TI has  R columns. With these  n o t a t i o n s  we  

so lve  t h e  reduced systems 

- - -  

T a(x)ETh(x) + flTVh(x) Ax = 0 t o  ob ta in  

where 
-T-T - 

h = T II h(x ) .  
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Step 3 of t h e  Algorithm 

Suppose we are i n  a new i t e r a t i o n  a t  t h e  p o i n t  x wi th  a corresponding 

Lagrange m u l t i p l i e r  v and we have a l r eady  observed f ( x ) ,  h ( x ) ,  Vf(x) and 

Vh(x), and have performed a Q-R decomposition of Vh(x). 

a lower t r i a n g u l a r  C such t h a t  CCT = B is  an approximation of t h e  Hessian 

A l s o  a v a i l a b l e  are 

of t h e  Lagrangian a t  (x,v) and r ,  t h e  r ad ius  of t h e  t r u s t  region.  I n  order  

t o  compute (Ax,Av) l e t  u s  f i r s t  mul t ip ly  ( 3 . 3 )  by from t h e  l e f t  t o  

ob ta in  

- - -T- + 
Q(B+ X I )  (Q Q +  Q Q)Ax + z*Vh(x)*Av + FoVxL(x,v) = 0. 

Observing t h a t  cVh(x) = 0, w e  then g e t  

---- -I= -T - - - 
(5.2) QAx(X) = - (QBQ + AI) Q(Vf (x) + BQ (QAx)) . 

I n  order  t o  t a k e  advantage of (5.2) w e  need a decomposiiton of t h e  matrix 
=q - 
QBQ . This  i s  bes t  done i n  the  fol lowing way: Define M = QC so  t h a t  

MM = QBQ . 
n X n or thogonal  mat r ix ,  an (n-R) X (n-2) permutation ma t r ix  and R 

an (n-1) X (n-2) upper t r i a n g u l a r  mat r ix  ( r e c a l l  R = rank(Vh(x))) .  

P a r t i t i o n  P i n t o  P = [i] where P has  (n-R) rows. Thus w e  have 

- 

T =* T R 
Obtain a Q-R decomposition of MT : PM C = [,I where P i s  an 

- 

( 5 . 3 )  T -T T 
(TL)T = M = P RC 

and 

=;=T T T =.=T (5 4 )  QBQ = CR RC ; QBQ + X I  = C(XTR+ XI)CT. 

A t  t h i s  po in t  w e  have t o  decide whether we want t o  compute Ax(0). 

9 T W e  check whether the d i s t ance  between x and H E ( x +  Ax: ETh(x) +TI Vh(x) Ax = 0 )  
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is  n o t  g r e a t e r  than  r i n  which case Ax(0) i s  obviously too  long and 

we need > 1. The d i s t a n c e  between x and H i s  11 KII = 11 T II hll . -T--T 

If r > IIxII we compute Ax(0) as fol lows:  

- - 
where QAx(0) is  - h from (5.1). Defining 

(5.5) . b(X) = C-'Vf(x) + C .  T-T Q (QAx(1)) - = C-%f (x) - a(X)C T-T- Q h 

w e  g e t  from (5.2), (5.3) and (5.4) 

Ax(0) = -Q -T- h - 7 C R -1- Pb(0) .  (5.6) 

If now 11 Ax(0)ll < r w e  can f ind  v+Av(O) (see below) and go t o  

t h e  next  s t e p .  Otherwise w e  have t o  f i n d  X > 0 such t h a t  11 Ax(A) 11 = r. 

W e  can g e t  an upper bound on t h e  value of 

From (5.1) and (5.2) 

X i n  t h e  fol lowing way: 

= -T- 
Thus r = 11 AX 11 5 11 CVf (x) + a ( A ) Q B Q  h 11 + a(A) 11 hll. This  impl ies  by 

s t r a igh t fo rward  a n a l y s i s  t h e  following bound on X 

otherwise .  
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A lower bound on X can a l s o  be der ived:  

(5 e 7b) 
( 0  otherwise.  

Define now the  func t ion  $(A) = 11 Ax(h)l12 - r ;  we  want t o  f i n d  a 

zero of t h i s  funct ion.  From theorem 3.2 w e  know t h a t  @(A) i s  cont inuous 

and decreases  monotonically t o  -r. @ nay no t  be always convex bu t  i t  

usua l ly  is. These c h a r a c t e r i s t i c s  of @ l e a d  t o  an i t e ra t ive  process  

t h a t  w a s  first suggested by Hebden [16]. and Mor; [19] f o r  t h e  non l inea r  

least square problem. I n  t h i s  process  we  se t  

( A  j is  the  j - t h  i t e r a t e )  and check t h a t  

are t h e  b e s t  lower and upper bounds A (gj+',u'+') where Y U  

known for A .  In p r a c t i c e  t h i s  method i s  quick ly  convergent and r e q u i r e s  

on average less than  2 A- i te ra t ions  p e r  r ad ius  t o  o b t a i n  X such t h a t  

l $ ( A ) l  < 0.125. r. 

By using (5.3), (5.4) and (5.5) w e  can rewrite (5.2) as 

-1 T- - - 
QAx(X) = - Z ( R T R + h I )  R Pb(X) 

o r  

Thus w e  have a l i n e a r  least squares  problem and i n  o rde r  t o  solve it w e  

have t o  obta in  a Q-R decomposition of t h e  mat r ix  (AiI) . This  is 

done wi th  the  use of Givens t ransformat ions  t o  g e t  a 2(n-&)x2(n-g)  ortho- 

- 

. 
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gonal  ma t r ix  W and an (n-2) (n-k) upper t r i a n g u l a r  R such t h a t  

= (:), (We do n o t  have t o  s t o r e  W; t h e  computations t h a t  have t o  

be done w i t h  W are done while  t he  decomposition i s  t ak ing  place.)  Thus 

( 5 . 9 )  T R R + hI  = ETE, 

- 
- 

P a r t i t i o n  W i n t o  (%) where W has (n-R) rows. Thus 

(5.10) 

These decompositions enable  u s  t o  compute Ax(A) and ax a 11 Ax(A)ll 

and thus  t o  o b t a i n  $ ( A )  = llAx<A) 11 - r and 

a ax 11 Ax(A) For complete d e t a i l s  see [31].  W e  
1 @'.(A) = 

II A X O )  II 
a l s o  o b t a i n  

- -1- 
v + AV = - TIT Q[(B+XI)Ax+Vf(x)].  

This  i s  t h e  unique s o l u t i o n  t o  ( 3 . 3 )  i f  Vh(x) is  of f u l l  rank  i n  which 

case ET i s  square and i n v e r t i b l e .  When Vh(x) .is n o t  of f u l l  rank 

w e  must dec ide  on appropr i a t e  Eagrange .mul t ip l ie rs  f o r  t h e  c o n s t r a i n t s  

t h a t  have been ignored. The s p e c i f i c  choice. of (v+Av) above sets 

t h e  m u l t i p l i e r s  f o r  t h e s e  c o n s t r a i n t s  t o  zero  which means t h a t  they  w i l l  

have no in f luence  on E+. 

* 
Steps  4-6 of t h e  Algorithm 

I n  s t e p  4 of Algorithm I we  use the pena l ty  func t ion  

PL(x) = f (x) + Cpilhi(x) I t o  dec ide  whether t h e  s t e p  is  acceptab le .  

W e  now desc r ibe  how t h e  pi ' s  a r e  set  i n  P L ( x ) .  We r e c a l l  from 

theorem 3.3 t h a t  i n  order  t o  guarantee descent  of t h i s  pena l ty  func t ion  

we need 
.. ~ 
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f o r  i = l , . . . , m ;  f o r  a l l  j = O , l ,  ... . 

0 0 
I n  the  program pi ' s  are i n i t i a l i z e d  t o  pi = 2 / v i / .  Then a t  each . 
i t e r a t i o n  w e  update t h e  p ' s  by i 

(5.11) 

A s  we  commented i n  s e c t i o n  4, w e  modify t h e  d e f i n i t i o n  of 

so t h a t  when the x ' s  are g e t t i n g  f e a s i b l e ,  t h e  r e g u l a r  Lagrangian func- 

t i o n  w i l l  r ep lace  t h e  pena l ty  func t ion  so  t h a t ,  as our l o c a l  theorems show, 

q-super l inear  convergence can r e s u l t .  

each of t h e  pi's 

borhood where the corresponding c o n s t r a i n t  i s  s a t i s f i e d .  

PL(x) 

This  i s  done by g radua l ly  changing 

i n t o  a Lagrange m u l t i p l i e r  when t h e  po in t  i s  i n  a neigh- 

W e  have three tests t h a t  are designed t o  check t h r e e  s topping  cr i ter ia :  

t h e  f convergence tes t ,  VL convergence test  and x convergence test .  I n  

t h e  program the  use r  i s  asked t o  s p e c i f y  El L 0 ,  E2 F 0 ,  E 3  2 0 ,  E 4  0, 

and funmin, a lower bound on t h e  func t ion .  

f convergence tes t  - s top  i f  f ( x )  - funmin < E and 11 h(x)II < E ~ .  1 

VL convergence t e s t  - s t o p  if 11 V~L(X,V)II < c2 and 11 h(x)  11 < E4.  

x convergence t e s t  - s t o p  if 11 Ax I t  < c3( I] X I ] +  1). 

, E4 = -8 -5 -10 The test  problems were run wi th  E = 10 , g2 = 10 , = 10 1 

on an IEM/370. 

A s  f o r  s t e p  6,  t h e  program has a series of tests which is  designed 

t o  compare t h e  qudra t i c  approximations of t h e  Lagrangian func t ion  L wi th  

L i t s e l f . ,  The new r a d i u s  is se t  t o  r k+l = (i) *I1 AxkI[ according t o  t h e  

f i t .  A t  t i m e s ,  when t h e  raduct ion  i n  t h e  Lagrangian va lue  is  much b e t t e r  
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. 

than  expected we may recompute a 

k 
nex t  i t e r a t i o n .  Also i f  PL(x + 

s tep  wi th  

Ax k ) > PL(x k ) 

rk = 2 r k  be fo re  moving t o  t h e  

and w e  w i l l  take rk = $rk 

recompute t h e  s t ep .  

Vardi [31]. 

For more d e t a i l s  on a s ses s ing  t h e  quadra t i c  model s e e  

Step 7 of t h e  Algorithm 

I n  ( 2 . 4 )  we gave t h e  BFGS formula f o r  updat ing t h e  ma t r ix  B t o  

o b t a i n  t h e  ma t r ix  B'. W e  now want t o  use  t h e  Cholesky decomposition of B, 

B = CC . Dennis and Schnabel [8] recommend t h e  fol lowing method: o b t a i n  T 

T T  + T  T a Q-R decomposition of t h e  ma t r ix  (J ) = C + v(y -Cv)  /v u where 

v = (yTs/s B s )  C s T * T  by us ing  Givens t ransformat ions  and t ak ing  advantage of 

t h e  f a c t  t h a t  (J+)T i s  a rank-one c o r r e c t i o n  of an upper t r i a n g u l a r  matr ix .  

+ T  + + T  Thus we g e t  (J ) = Q (C ) . C+ is then  t h e  Cho1esk:r decomposition of t h e  

T BFGS update of B, i .e . ,  B+ = C+C+T. Of course i f  y s 5 0, J+ is  n o t  

w e l l  def ined and we  j u s t  t ake  C+ = C. 

The program also con ta ins  a subrout ine t h a t  ob ta ins  a rough estimate of 

t h e  condi t ion  number of B by checking t h e  r a t i o  between t h e  l a r g e s t  

diagonal  element and t h e  smallest diagonal element of C. I f  t h e  r a t i o  

i s  too  h igh  t h e  column t h a t  conta ins  t h e  low diagonal  element is changed. 

I n  gene ra l  t h e  t r u s t  reg ion  model may prevent  some of t h e  numerical  

problems because t h e  condi t ions  number of t h e  mat r ix  --- (GBQ +XI)  as a 

func t ion  of X i s  monotonically decreasing. 

Tes t ing  t h e  Program 

The program has been t e s t e d  ex tens ive ly  wi th  test  problems t h a t  appear 

i n  t h e  l i t e r a t u r e .  (See Himmelblau [19], Miele et a l .  1181, Solow [27] and 

Wright [32].)  

of t h e s e  problems s t a r t i n g  p o i n t s  t ha t  w e r e  much f u r t h e r  from t h e  known solu-  

I n  o rde r  t o  check the g l o b a l  convergence, w e  added f o r  each 

t i o n  than  t h e  suggested s t a r t i n g  points ;  convergence w a s  always obta ined .  

0 
For a l l  problems w e  used r = 1. 
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V,'z give the r e s u l t s  of the following problems: 

Pmblem 4: 

Problem 5:  

Problem 6: 

f(x) = (xl - X2.l \ 2  + (x2 - x3) 4 

f(x) = 1000 - x1 2 - 2x 2 2  - x3 - x1x2 - x x 

hl(x) = x1 2 2 2  + x2 + x3 - 25 

q x )  = - (x + x2 + x3 - 7) 3 

2 4  hl(x) = XI + x1x2 + x3 - 3. 

f(x*) = 0. 

2 1 3  

h2(X) = 8x1 + 1 4 ~  + 7x3 - 56. 2 
€(x*) = 961.?151?. 

1 

f(x) = e-xp(xlx2 - x3) L 

h (x) = xf + x4 - 2 

h2(x) = x1x2 - x2 + x 
I 3 

3 
3' 

f(x*) = 0.16550395. 

4 4 2 f(x) = -x1x4 2 + (X1-l) + (x2 - x3) + (x3-1) - 
L hl(x) = x1x4 + sin(x -x ) - 4 4 3  

h2(x) = x2 2 + x2x4 - 10.  
3 4  

Two loca l  solutions:  f(x*) = -4.496926; f(x*) = 1.9046409. 

f(x) = X1X2X3X4Xs 

hl(x) = x1 2 2 2  + x2 + x + x2 + ' x2 .  -' 1 0  

h3(x) = x1 3 + x; + 1. 

3 1 5  
h2(x) = x2x3 - 5x4x5 

f(x*) = -2.9197004. 

. 



Problem 7: 

Problem 8: 

Problem 9: 

Problem 10: 

Problem 11: 

Problem 12 :  
* 
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f(x) = exp(x x x x x ) 

constraints as i n  problem 6. 
1 2 3 4 5  

f(x*) = 0.053949848 = exp(-2.9197004), 

f(x) = (X1-l)2 + (Xa-X2) 2 + (x2-x3I7 + (x,-x4) 4 + (x4-x5)4 

h2(X) = x2 - x3 2 * x4 + 2 - 2 J z  

- 2 - 3 J z  2 3  hl(x) = x1 + x2 + x3 

h3(X) = x1x5 - 2.  

Five local solutions : f (x*) = 0.029310831 ; 

f(x*) = 27.871905: f(x*) = 44.022072; 

f(x*) = 52.90258; f(x*) = 607.03552. 

f(x) = (Xl-l)  2 + (Xl-X2) 2 + (x3-l) 2 + (x4-1l4 + ( ~ ~ - 1 )  6 

hl(x)  = ~ 1 x 4  2 + sin(x4-x5) - 2.8284 

+ x4x2 - 9.4142. 3 4  h2(x) = x2 

f(x*) = 0.24150237. 

f(x) = (X1-l) 2 + (x1-x2)2 + (x2-x3) 4 

hl(x) = xl(l+x2) 2 + x4 - 8.2426. 
3 

f (x*) = 0.032567769. 

hl(x) = x1 + 3xz 

h2(x) = x3 + x4 - 2 ~ ~  

5' h3(X) = x2 - x  

f(x*) = 4.0930233. 
f (x)  = 4x1 2 + 2x2 2 + 2x3 2 - 33x1 + 

2 hl(x) = 2x2 + 3~ 
2 h2(x) = x3 + 4~ 1 

f(x*) = -99,555041. 

- 7 

- 11 
1 

x2 - 2 x3 
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No. of No. of 
Problem number Starting point Function eval. Gradient eval. 

1 
1 
2 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
8 
8 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

(2.4,.5,0) 

(-5, -10,5) 

(50, 50,50) 

(10, -10 ,lo) 

(10,lO , lo )  

(0 91 91) 
(-10,10,10) 
(-1 ,1,1) 
(-10,lO ,lo) 

(10,lO ,10 ,lo) 
(-1,1.5,2,-1,-2) 
(-10,10,10,-10,-10) 
(-2,2,2, -1 ,-1) 

(3.159,3.162 ,O ,1) 

. .  

(-1 ,-i ,-I ,-I, 

(-1,2y1,-2,-2 
(1 91 Y 191 91) 
(2,2 , 2 9 2  92) 
(10,10,10,10, 
(-2,-2,-2,-2, 
(2 ,2,2Y2 Y2) 
(10,10,10,10, 

(-1,3, -0.5, - 2  

(1.5 ,l. 5 ,l. 5) 
(10,lO ,lo) 
(2 9 2  9 2 92 9 2 )  

(10 ,lo ,10,10 ,lo) 
(4 9 - 3,4) 
(10,-10,lO) 

28 
78 
18 
20 
23 
11 
34 
9 

22 
19 
47 
18 
25 
8 
14 
16 
15 
13 
13 
25 
45 
16 
91 
13 
20 
13 
16 
11 
15 

24 
50 
11 
14 
15 
8 
21 
8 
15 
16 
35 
10 
11 
8 
10 
13 
12 
11 
10 
21 
22 
14 
64 
11 
15 
9 
11 
10 
11 
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